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A B S T R A C T   

Several spectral indices have been proposed in the last decade for remote detection of macroplastics in the 
environment, however no comprehensive analysis has been provided on the sensitivity of those algorithms to 
different plastic types and their application to remote imagery over land and water. In addition, algorithm 
threshold values for plastic detection are typically variable per scene, and evaluation of how thresholds perform 
in multiple images is scarce. In this study we use a reflectance database of diverse pure plastic and non-plastic 
materials to evaluate spectral signatures for algorithm design and specificity evaluation, as well as to define 
optical classes for plastics. Published and new algorithms proposed in this study were then evaluated on three 
flight lines, comprising different observation geometries, of the Airborne Prism Experiment (APEX) sensor taken 
over Ostend, Belgium. Our results show that most common plastics cluster into two different categories based on 
their absorption features in the near infrared (NIR) and shortwave infrared (SWIR): Type 1 includes poly
ethylene, polypropylene, and vinyl, while Type 2 includes polyester, polystyrene, and acrylic. Nylon (polyamide) 
forms a separate spectral signature. Most line height algorithms were specific in the sense of mostly detecting 
plastic of either Type 1 or Type 2, while the evaluated ratio algorithms provided less distinction. All but one of 
the evaluated algorithms were found to have a threshold value that provided distinction between plastic and non- 
plastic materials (e.g., wood, concrete, algae, ice, etc.). Only the thresholds of the newly developed algorithms 
were consistent between the reflectance database and the imagery. Detection of macroplastic between flight lines 
was more consistent over land than over water. Floating transparent plastic bottles (Type 2) with plastic labels 
(Type 1) and floating polyethylene bags (Type 1) were only detected in one of the three flight lines. Our results 
support previous observations on the importance of high spatial resolution to minimize mixed spectral signals 
within a pixel, and points to the relevance of the thickness of the plastic layer influencing the detection for a 
given background and mixed signal. We also show that residual errors from atmospheric correction have a higher 
impact on the performance of ratio indexes than line heights. Our research suggests that the different plastic- 
specific algorithms can be used as complimentary metrics for plastic remote sensing, potentially enabling 
plastic optical type classification.   

1. Introduction 

Various algorithms and platforms have been proposed for optical 
remote sensing of plastics in the marine and terrestrial environments 
(Freitas et al., 2021; Lavender, 2022; Martínez-Vicente et al., 2019; 
Maximenko et al., 2019; van Sebille et al., 2020). Many of these 

algorithms detect bright spectral anomalies compared to background, 
but cannot discriminate plastic material from other types of objects that 
create those anomalies. Current literature often focuses on either 
controlled experiments or Sentinel-2 data with mixed spatial resolutions 
across wavebands that are subject to large uncertainties (Hu, 2021). And 
while several broadband ratios using shortwave infrared (SWIR) 
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wavelengths have been successfully used to detect plastics on land 
(Asadzadeh and de Souza Filho, 2016; Zhang et al., 2022), these indices 
have not been applied to aquatic ecosystems which tend to have lower 
background SWIR reflectance and issues with sun glint. 

From a hyperspectral perspective, several distinct spectral features 
were identified to be ubiquitous to naturally-harvested marine plastics, 
as well as from a collection of virgin plastic material (Garaba and 
Dierssen, 2018, 2020; Knaeps et al., 2021). Notably, four absorption 
features were identified at ≈931, 1215, 1417 and 1732 nm specific to 
hydrocarbons or plastics. The features at 931 and 1417 nm coincide with 
absorption bands of water vapour and would be challenging to measure 
from the top of the atmosphere. Several other studies have measured the 
spectral reflectance of naturally-harvested weathered plastic bottles and 
bags and determined that these diagnostic spectral features are not 
ubiquitous to all plastics. For example, the 1215 nm feature was not 
apparent in reflectance of both floating polyethylene terephthalate 
(PET) and expanded polystyrene (PS) plastics (cf. Table 1 for plastic 
names and acronyms). Also, a broader absorption feature centred at 
1190 nm can be observed in polypropylene (PP) and PET. Additionally, 
the 1732 nm absorption feature was largely absent in observations of 
PET plastics, but an additional feature at 1660 nm was evident in prior 
works. 

Spectral reflectance properties of plastics, including absorption band 
depth, width, and central waveband, also vary with plastic trans
parency, thickness, and shape. Spectral absorption features can be 
enhanced when targets have multiple layers separated by air, such as an 
intact plastic bottle (Goddijn-Murphy and Dufaur, 2018). Moreover, 
assessing the reflectance of semi-transparent material is challenging due 
to the contribution of reflectance from the background material, such as 
grass or sediment-laden water. Even controlled experiments can create 
artefacts when plastic material is placed over “black” materials or 
floating in containers that can reflect more light through the material 
than the natural environment creating larger absorption features and 
artificial water absorption features (Garaba et al., 2021a). This is espe
cially problematic when evaluating floating plastics over clear water, 
which has a water-leaving reflectance lower than common “black” 
materials (Mobley, 1994). 

This study evaluates published and new remote sensing algorithms 
for detecting different types of plastic material on land and floating on 
water. We evaluate the sensitivity and specificity of those algorithms on 
a large database of plastic and common non-plastic materials. And we 
evaluate the performance of those algorithms on airborne imagery from 
the Airborne Prism Experiment (APEX) sensor, including multi-meter 
scale artificial targets made of floating PET/PP bottles and LDPE bags. 

2. Material and methods 

2.1. Field campaign 

The survey was conducted on 27 June 2019 on the eastern shore of 
the Spuikom, a lagoon in Ostend, Belgium (51∘13′47.5” N 2∘57′38.7″ E). 
Measurements were performed on floating targets placed on the lagoon 

and on structures in the shore, at the VZW Inside-Outside club. Details of 
targets, in situ measurements and airborne imagery are provided in the 
sections below. 

2.1.1. Sampled targets 
Selected targets on shore included asphalt, concrete walkway tiles 

(clinkers), small boats, PET bottles, and LDPE sheets from Flanders’ 
standard waste bags for “Plastic or Metal packaging and Drink cartons” 
(PMD; Fig. 1). The floating PET bottles target was 3.0 m × 2.5 m. The 
floating PMD bags target was 4.0 m × 4.0 m and the PMD bags target 
over grass was 3.60 m × 3.20 m. 

2.1.2. In situ reference measurements 
Hyperspectral Lambert-equivalent bi-hemispherical reflectance, 

ρL(λ), of anthropogenic targets were estimated using a portable spec
troradiometer (ASD FieldSpec FR, Malvern Panalytical). The spectror
adiometer measures radiance from 350 nm to 2500 nm at a nominal 
spectral sampling interval of 1.4 nm in visible to near-infrared (NIR) and 
2 nm in the SWIR, with a nominal bandwidth of 3 nm in the visible-NIR 
and 10 nm in the SWIR. Measurements were conducted outdoors be
tween 12:00 and 14:00 UTC under ambient light. Each measurement 
corresponds to the average of 30 sequential scans over a target sample 
spot, with ten different spots measured per sample. The instrument was 
fitted with an 8∘ field-of-view (FOV) lens, and operated in reflectance 
mode, using a 25 cm × 25 cm highly reflective (99%) diffuse reflectance 
panel (Spectralon, Labsphere) as a reference for determining the relative 
reflectance of the target. The hemispherical-directional measurements 
were converted to bi-hemispherical by scaling the measured values by π 
sr, the conversion factor if the targets had an isotropic reflectance 
distribution. 

The interdetector steps in the spectral data resulting from the over
lapping of main detectors VNIR, SWIR1 and SWIR2 were adjusted by 
applying a splice correction. A splice correction is not based on any 
physical model (Hueni and Bialek, 2017), but mitigates artefacts in the 
spectral shape and magnitude. Missing data is related to the spectral 
regions affected by strong light absorption by atmospheric gases, around 
≈1400 nm and ≈1800 nm. Data is available in open access on PANGAEA 
(Garaba et al., 2021b). 

Background diffuse water reflectance, ρ*,L
w (λ), was estimated using 

another spectroradiometer (FieldSpec HandHeld, Analytical Spectral 
Devices). The instrument measures radiance from 325 nm to 1075 nm at 
a nominal spectral sampling of 1.4 nm and a bandwidth of 3 nm. The 
skylight-blocked approach (Lee et al., 2019; Tanaka et al., 2006) was 
utilized to avoid specular reflectance. A grey diffuse reflectance panel 
(Spectralon, Labsphere) with nominal 12% reflectivity (Castagna et al., 
2019, 2022) was used as reflectance reference. In total, measurements 
were performed in eight stations in the lagoon. Due to the negligible 
water-leaving signal in the SWIR as a result of the high absorption co
efficient of pure water, the visible-NIR measurements were extrapolated 
to the SWIR range by using the last NIR band as a constant. Data from 
eight water stations were combined to provide an average ρ*,L

w (λ) of the 
lagoon for the period of the overflights. 

The spectral reflectance of the targets is presented in section S1 of the 
supplementary material. 

2.1.3. Airborne imagery 
Imagery over the Spuikom and its surroundings were acquired with 

the APEX sensor mounted on a Cessna 208B Grand Caravan EX aircraft. 
The instrument is operated by the Flemish Institute for Technological 
Research (VITO). The sensor records upwelling radiance from 375 nm to 
2498 nm, discretized in 299 bands, with a spectral sampling distance 
ranging between 2.5 nm to 14 nm and bandwidth ranging from 3 nm to 
20 nm measured as the full width at half maximum. Considering the 
aircraft altitude and the sensor FOV, data were collected at a nominal 
1.6 m × 1.6 m spatial resolution. Three flight lines (named a01c, a02c, 

Table 1 
Acronyms of plastic types.  

Acronym Plastic name Common name 

ABS Acrylonitrile butadiene styrene – 
EVA Ethylene-vinyl acetate – 
PA Polyamide Nylon 
PE (HDPE or LDPE) Polyethylene (High- or low-density) – 
PET Polyethylene terephthalate Polyester 
PMMA Polymethyl methacrylate Acrylic 
PP Polypropylene – 
PS Polystyrene – 
PTFE Polytetrafluoroethylene Teflon 
PVC Polyvinyl chloride Vinyl  
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a06c) with different azimuthal orientations were performed over the 
region of interest. Imagery acquisition was completed in ≈39 min: a01c 
(10:01 to 10:04 UTC), a02c (10:09 to 10:11 UTC), and a06c (10:36 to 
10:40 UTC). The step-by-step procedure performed to generate surface 
reflectance data used in this study is summarized in Fig. 2. 

Radiometric calibration was performed by VITO to convert raw 
sensor data into at-sensor radiance (Schaepman et al., 2015; Taubert 
et al., 2013). A “smile correction” was applied to provide spectral co- 
registration over the detector surface, using splines to interpolate the 
radiometric measurements to a common spectral grid. The targets were 

Fig. 1. Plastic reference targets used in the 27 June 2019 experiment on the Spuikom reservoir included: (A and B) collection of empty floating PET bottles with 
reflectance measured from the dock and then moved away; (C and D) floating PMD bags (LDPE) attached to a PVC frame; (E) dry PMD bags (LDPE) placed on grass. 
Additional plastic material sampled include (F) floating orange plastic boats, and (G) white and blue sailboats on land. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. A schematic of the processing steps for the hyperspectral Airborne Prism Experiment (APEX) imagery acquired over the Spuikom, Ostend, Belgium on 27 
June 2019. 

A. Castagna et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 298 (2023) 113834

4

analysed in the observation geometry to avoid introducing artefacts 
from the spatial interpolation to a projected grid. A left-shift of 1 pixel 
was necessary for the wavebands 109 to 299 (958 nm to 2498 nm) to 
provide spatial co-registration with the visible-NIR bands. Reference 
targets over land and plastic targets floating on the water were visually 
located on the observation grid of each image using Global Positioning 
System (GPS) coordinates, true colour composites, aerial maps from 
Bing, and projected versions of the imagery produced specifically for 
this purpose (Fig. 3). Water calibration points were extracted from the 
projected imagery using a 10 m radius buffer and selecting the minimum 
radiance at each band to reduce the impact of the sky and sun glint. 

The empirical line method (ELM; Smith and Milton, 1999) was 
applied to compensate for optical effects of the atmosphere layer be
tween the sun-surface and surface-sensor. Here, ELM was based on 
regression analyses of in situ ρL(λ) against airborne at-sensor radiance 
over the same reference targets. The reference targets are required to be 
(i) spatially homogeneous in a spatial scale larger than that of the sensor 
instantaneous FOV to avoid mixed spectral signals and (ii) to cover, in all 
spectral bands, the possible range of reflectance of the observation tar
gets, such as to not require extrapolation of the regression relation. 
Three reference targets on land that satisfied these requirements in the 
visible and near-infrared were: the asphalt, the grey clinkers, and pink 
clinkers. Since the grey and pink clinkers only present spectral differ
ences in the visible range, the PMD bags (LDPE) on grass was used as an 
additional calibration point for the ELM. All land targets were brighter 
in the SWIR than the floating plastic targets, so ρ*,L

w (λ) was included as a 
lower calibration point. Prior to the regressions, the in situ measure
ments were converted into APEX-equivalent wavebands by averaging 
the in situ spectra with Gaussian relative spectral response functions 
(SRF) with matching sensor waveband centres and widths (Jehle et al., 
2015). An example of the ELM procedure is provided in section S1 of the 

supplementary material. 
APEX wavebands were also aggregated as necessary to provide the 

same wavelength coverage as the wavebands of the sensors for which 
the tested published algorithms were originally developed for. The de
tails of the band aggregation are provided in Section S2 of the supple
mentary material. 

Imagery visualization and analyses were performed in R version 
3.6.3 (Team, 2020) with aid of packages “raster” version 3.4–13 (Hij
mans, 2021) and “rgdal” version 1.5–23 (Bivand et al., 2021). Several 
visualizations of spectral quantities in this study were normalized by the 
spectral integral of that quantity in the same spectral range as presented 
in the visualization. Those quantities are here called ‘integro- 
normalized’. 

2.2. Compiled dataset of plastics and other materials 

A dataset of previously published reflectance measurements was 
compiled with an assortment of plastics including: ABS (n = 2), PA (n =
2), PE (n = 23), PET (n = 6), PMMA (n = 1), PP (n = 1), PS (n = 1), PTFE 
(n = 1), PVC (n = 6) and mixed unknown plastics (n = 7; Garaba and 
Dierssen, 2017). The dataset was augmented with common construction 
materials (e.g., concrete, wood, brick, fabric, metal, fiberglass; Kokaly 
et al., 2017; Knaeps et al., 2020) and other potential bright floating 
targets (e.g., macroalgae, whitecaps, ice; Dierssen, 2019; Khan et al., 
2017; Hu et al., 2017; Qi et al., 2021; Wang et al., 2018). The reflectance 
measurements of brine shrimp (Artemia) cysts by Qi et al. (2021), Ulva 
by Hu et al. (2017), and Sargassum by Wang et al. (2018) were used at 
the highest biomass concentration. The non-plastic targets added to the 
dataset could potentially be observed on imagery over land and water, 
and will help to evaluate if the algorithms are effective in discriminating 
plastic from other materials. 

Fig. 3. Pseudo true-colour APEX imagery in the observation grid, acquired on 27 June 2019 over the Spuikom, Belgium. (A) flight line a02c; (B) flight line a02c 
showing ground reference pixels representing the targets; (C) flight line a01c; and (D) flight line a06c. Plastic targets include: T01 - PMD on grass; T02 - PMD on 
water; T03 – PET bottles on water; T04 - Orange boats; T05 – Blue and white boats. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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The subset of the dataset containing only plastics was subject of a 
cluster analysis with the K-means algorithm (Forgy, 1965). The K-means 
algorithm looks for an optimal arrangement of samples into a user- 
defined number of groups in order to minimize within-group variance. 
Prior to the analysis, the spectral range of strong atmospheric absorption 
was excluded and the data was integro-normalized in the range of 1000 
nm to 1800 nm. The spectra with nearly flat spectral shapes were 
manually separated into a cluster of “featureless spectra” in the wave
length range of interest before the K-means application. The objective of 
the analysis was to observe common patterns in spectral features and 
support algorithm development in this spectral range. 

2.3. Plastic detection algorithms 

A set of algorithms for plastic detection were evaluated with the 
compiled dataset and with the airborne imagery (Table 2). The tested 
algorithms are divided into two classes: line-height indexes and ratio 
indexes. Line heights algorithms typically concern three wavebands, 
where the signal is taken as the difference of the value of the middle 
band to the linear interpolation of the values of the other bands. Ratio 
algorithms involve the ratio of reflectance values, directly on wavebands 
or after addition or subtraction operations between a set of wavebands. 

The previously published line height indexes tested here were the so 
called “hydrocarbon indexes” (HI) centred at 1215 nm (Garaba and 
Dierssen, 2018), and at 1732 nm (Kühn et al., 2004). The previously 
published ratio indexes tested here were the Advanced Plastic Green
house Index (APGI; Zhang et al., 2022), the normalized difference plastic 
index (NDPI; Guo and Li, 2020), and the relative-absorption band depth 
(RBD; Asadzadeh and de Souza Filho, 2016). We also evaluated a new 
line height and a new ratio index developed in this study: the line height 
index centred at 1675 nm (HI_1675), and a normalized difference index 
using two aggregated SWIR wavebands centred at 1610 and 1715 nm 
(ND_1715; Table 2). The choice of bands for these algorithms was based 
in the spectral analysis of plastic and non-plastic targets presented in 
section 3.1 and details are further discussed in section 4.2. 

Sources: HI_1215 (Garaba and Dierssen, 2018); HI_1675 (this study); 
HI_1732 (Kühn et al., 2004); APGI (Zhang et al., 2022); NDPI (Guo and 
Li, 2020); ND_1715 (this study); RBD (Asadzadeh and de Souza Filho, 
2016). 

Thresholds were determined visually for each index to identify the 
maximum number of known targets while preventing false positives. 
Thresholds were first determined on the compiled reflectance database 
of plastics and other materials to identify the limits where different sets 
of plastics could be distinguished. The thresholds were then adapted 
when necessary for application to the imagery. A single threshold was 
applied to the three flight lines to evaluate effects of artefacts in mixed 
pixels and atmospheric correction. Additional information on the 

imagery thresholds, including index values and contours are provided in 
Section S3 of the supplementary material. 

All ratio algorithms (NDPI, ND_1715, and RBD) showed sensitivity to 
atmospheric correction issues over dark water surfaces that included 
some negative reflectance values in the SWIR bands (see Section S4 of 
the Supplemental material). Those errors related to atmospheric 
correction are discussed in section 4.3. To avoid retrieval of noise over 
water due to low signals in the SWIR, a mask was applied to remove 
pixels where the average reflectance between 920 and 1090 nm was <
0.01. 

3. Results 

3.1. NIR/SWIR characterization of selected plastics and non-plastic 
materials 

With a few exceptions, non-plastic construction materials have 
flatter spectral shapes with no significant absorption bands between 
1000 nm and 1800 nm (Fig. 4A). Brine shrimp cysts had a spectral shape 
similar to wood, with relativelly subtle spectral features, but mostly a 
positive spectral slope in the two SWIR regions, separated by an offset 
(Fig. 4B). The photosynthetic organisms included in the dataset had a 
spectral shape similar to whitecaps, which can be expected considering 
their high water composition. Overall, the spectral features of non- 
plastic targets are quite different from the spectral shapes of fiberglass 
and plastics (Fig. 4C and D). Fiberglass is a glass fiber-reinforced plastic, 
and the spectral features of the plastic material are dominant in the 
reflectance spectra. Most of the plastic material exhibited a striking 
decreasing slope in the SWIR reflectance around 1600 nm that was 
unique compared to the non-plastic targets, which is the basis of the new 
broadband SWIR algorithm (ND_1715; Table 2). 

Since plastic materials showed a diversity of spectral shapes across 
the NIR and SWIR, a cluster analysis was performed to find a reduced 
number of optical classes that could potentially be identified from NIR- 
SWIR measurements (Fig. 5). The cluster analysis identified six broad 
clusters of plastic reflectance spectra across the NIR and SWIR wave
lengths. The first cluster represented plastics with nearly featureless 
reflectance (Fig. 5A) indicative of low concentration or thickness of 
material. The second and third clusters were comprised mainly of PVC 
and PE plastics, with absorption features centred around 1215 nm and 
1720 nm (Fig. 5B and C). The only sample of PP material was grouped in 
Cluster 3 together with PE and PVC. Features in Cluster 3 were more 
pronounced than those in Cluster 2, which could be a result of a stronger 
absorption magnitude (higher concentration of the absorptive material). 
This could also help explain the dampened features in Cluster 1, mostly 
composed of the same PE plastics that were observed in Clusters 2 and 3. 
Clusters 4 and 5 were composed mostly of PET, PMMA, and PS, with 

Table 2 
Detection indexes tested on the APEX hyperspectral image obtained on 27 June 2019 over the Spuikom, Belgium. The APEX bands were aggregated to cover the same 
spectral ranges as those proposed in the published algorithms. The spatial resolution for airborne sensors are the ranges of typical operating heights, while for 
spaceborne sensors is the lowest spatial resolution of the used wavebands.  

Index Algorithm Sensor Resolution 

HI_1215 
(1223 − 1203)

ρL(1243) − ρL(1203)
1243 − 1203

+ ρL(1203) − ρL(1223)
AVIRIS 2–20 m 

HI_1675 
(1675 − 1604)

ρL(1753) − ρL(1604)
1753 − 1604

+ ρL(1604) − ρL(1675)
APEX 2–5 m 

HI_1732 
(1728 − 1702)

ρL(1745) − ρL(1702)
1745 − 1702

+ ρL(1702) − ρL(1728)
HyMap 2–10 m 

APGI 
100ρL(439)ρL(664)

2ρL(831) − ρL(664) − ρL(2203)
2ρL(831) + ρL(664) + ρL(2203)

MSI/Sentinel-2 20 m 

NDPI 
{

ρL(1571) − ρL(1732)
}
+
{

ρL(2165) − ρL(2329)
}

ρL(1571) + ρL(1732) + ρL(2165) + ρL(2329)
WorldView-3 4 m 

ND_1715 ρL(1590to1630) − ρL(1695to1735)
ρL(1590to1630) + ρL(1695to1735)

APEX 2–5 m 

RBD ρL(1660) + ρL(2165)
ρL(1732)

WorldView-3 4 m  

A. Castagna et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 298 (2023) 113834

6

blue-shifted absorption features centred near 1135 nm and 1660 nm 
(Fig. 5D and E). The proposed HI_1675 algorithm was designed to cap
ture this spectral signature. Cluster 4 had a sharper rise in reflectance in 
the SWIR bands (1660 to 1800 nm) compared to Cluster 5, and a subtler 
absorption feature at ≈1720 nm. The spectral shapes suggest that as 
with Clusters 2 and 3, Clusters 4 and 5 represent the same absorption 
bands, but at different magnitudes. The higher magnitude of the ab
sorption bands would better define the absorption features around 1150 
nm in reflectance space, but it would result in loss of detail around 1700 
nm due to the lower reflectance boundary at 0. Cluster 6, comprised of 
PA, had absorption bands similar to Clusters 2 and 3, but with an 
additional absorption feature in the SWIR from 1535 to 1605 nm 
(Fig. 5F). 

Broadly, we define three different groupings of plastic materials 
based on the NIR/SWIR absorption features (Table 3). Type 1 has ab
sorption bands around ≈1215 nm and ≈1730 nm that represents the PP 
and PE plastics that typically comprise floating microplastics. Type 2 has 
bands that are blue-shifted centred at ≈1135 nm and ≈1660 nm. The 
composite material Fiberglass is included in Type 2, though the ab
sorption feature at ≈1660 nm is red-shifted to 1684 nm. Nylon (PA) was 
considered Type 3 with similar bands to Type 1, but with strong 

absorption features around ≈1535 to 1605 nm. 
The above analysis suggests that, depending on the specific design of 

anchor or normalization wavebands, algorithms extracting information 
around 1215 nm and 1730 nm are expected to detect Types 1 and 3, 
while algorithms extracting information around ≈1135 nm, ≈1670 nm 
would detect Type 2. Algorithms with additional absorption bands at 
1535 and/or 1605 nm could identify nylon (PA) from other Type 1 
plastics. 

3.2. Evaluation of specificity plastic detection algorithms 

The indices from Table 2 were applied to the compiled database of 
plastic and other materials (Fig. 6). With one exception, all algorithms 
were capable of differentiating plastic materials from non-plastic ma
terials (Fig. 6). The exception was the APGI algorithm, which showed a 
large overlap of the index value between plastic and non-plastic mate
rials (Fig. 7). Application of APGI may be constrained to datasets 
without significant presence of wood and ice (cf. section 4.2). 

The HI_1215 and HI_1732 indexes were generally able to distinguish 
Type 1 plastics with better performance of the HI_1732 index which was 
also capable of differentiating some plastics in Clusters 1 and 4 (Fig. 6A 

Fig. 4. Lambert-equivalent reflectance spectra normalized to the integral from 1000 to 1800 nm for (A) non-plastic construction material; (B) assortment of floating 
matter including algae, whitecaps, and ice; (C) fiberglass; and (D) plastics. 
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and C). The HI_1675 index provided a strong differentiation between 
plastics of Type 2 from other materials, with the exception of two PVC 
samples of Cluster 3 (Fig. 6B). This index was designed as a compromise 
to capture plastics and fiberglass in Type 2, with the main absorption 
feature at 1660 nm or 1684 nm. 

The NDPI and the ND_1715 captured a similar pattern across samples 
(Fig. 6D and E) as they target the same feature around ≈1720 nm. These 
ratio algorithms result in more generic discrimination of plastics from 
non-plastic materials and show little potential for plastic group 
discrimination. Like the NDPI, the RDB was designed for WorldView-3 
wavebands and extracts a relative signal of the absorption feature at 
≈1720 nm. However, its lower wavelength anchor point is located at 
≈1660 nm, mostly preventing the discrimination of plastic materials of 
Type 2 (Fig. 6F). We note that the ND_1715 algorithm can also be 
applied to WorldView-3, using bands SWIR-3 and SWIR-4. 

All the line height indexes showed the potential for positive and 
negative thresholds with the compiled dataset, while ratio algorithms 
allowed for a single, positive, threshold. The threshold values are pre
sented in Table 4. 

3.3. Water and floating targets viewed in APEX imagery 

Comparison of atmospherically-corrected APEX spectra from the 
three flight lines with the field measurements of floating plastics 
revealed similar spectral shapes, with some differences in magnitudes 
(Fig. 8). The reference and retrieved spectra were very similar for the 
wet PMD bags (LDPE). The difference was higher for the plastic bottles 
and the orange boats. This is likely the effect of mixed pixels due to the 
target size and layout of the observation grid. The PMD bags were the 
largest target, forming a square target of 16 m2. The PET target was a 
smaller rectangular target of 3 m × 2.5 m. The orange boats were even 
smaller targets, with dimensions of ≈2.5 m × 1.5 m. 

The average water reflectance (Fig. 8D) has an order of magnitude 
lower reflectance compared to the plastic targets. Hence, water was used 
as a dark calibration point for the ELM-atmospheric correction. While 
there are apparent differences between the field and APEX reflectance, 
the amount is very small compared to the other targets (≈0.01 in the 
SWIR). As noted in the methods, pixels with reflectance at 1000 nm less 
than 0.01 were masked out to avoid noise in the plastic retrievals over 
water using SWIR band ratios. 

3.4. Application of plastic detection algorithms to APEX imagery 

The detection indexes presented in Table 2 applied to each APEX 
imagery over the Spuikom and surroundings are shown in Fig. 9, Fig. 10, 

Fig. 5. Cluster analysis of plastic reflectance from the compiled database over the spectral range from 1000 to 1800 nm. The spectral gap centered at 1400 nm 
corresponds to the spectral region where the atmosphere is opaque and the signal is low. Dotted lines highlight minima related to absorption features. Type 1 is 
Cluster 2, 3 and 6; Type 2 is Cluster 4, 5; Type 3 is Cluster 6 with extra absorption bands at 1535 and 1605 nm. 

Table 3 
Broad grouping of plastic types based on identifying NIR/SWIR spectral ab
sorption bands. Absorption features are generally centered within ±10 nm from 
values reported here for different plastics.  

Type 1† Type 2†† Type 3†††

(1215, 1730 nm) (1135, 1670 nm) (1535, 1605 nm) 
PE (HDPE or LDPE) PET PA 
PP PMMA  
PVC PS  
PA ABS   

Fiberglass   

† Type 1 includes plastics in Clusters 2, 3 and 6. 
†† Type 2 includes plastics in Clusters 4 and 5. 
††† Type 3 includes plastics in Clusters 6. 
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and Fig. 12. Photographs and very high spatial resolution imagery of the 
targets around the Spuikom, with their location in the imagery, are 
presented in Fig. 11 and Fig. 13 to aid the interpretation of the results. 
Both terrestrial and floating aquatic targets are evaluated in Figs. 9 and 
10 for all three flight lines. Only one flight line (a06c) captured the 
terrestrial targets in Fig. 12. 

The subset of identified targets was consistent with expectations 
from the application to the compiled dataset. In general, targets iden
tified by HI_1215 and HI_1732 were also identified by RBD (Fig. 9), 

while those three indexes identified different subsets than those iden
tified by HI_1675 (Fig. 10). The HI_1215 was better at delineating the 
plastic targets, but the HI_1732 was able to identify more targets, as 
expected from the compiled dataset analysis. The HI_1732 was the only 
line height index identifying the PMD bags on grass (Target 01) and the 
HI_1675 was the only index capable of identifying the small skylights on 
the club’s rooftop (Target 09). 

The APGI provided a mixed coverage between HI_1675 and HI_1732 
and was the only ratio algorithm to identify the PMD bags on grass 

Fig. 6. Evaluation of algorithms using the compiled database. Vertical grey lines separate the groups: Type 1 plastics include clusters 2, 3 and 6; Type 2 plastics 
include clusters 4 and 5. Cluster 1 has dampened spectral signatures that cannot reliably be targeted, and is composed of plastic samples present in other clusters. 
Colors follow the colour code per cluster. Red line indicates a threshold used to separate groups. OWI = Organisms, whitecaps, and ice; NPC = non-plastic con
struction, and F = fiberglass. For further details see Table 3, Figs. 4 and 5. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

A. Castagna et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 298 (2023) 113834

9

(Target 01; Fig. 9). The indexes identifying the largest number of targets 
were the ratio indexes NDPI and the ND_1715, with the latter also 
providing the most complete delineation of targets for all indexes 
(Fig. 10). The RBD, while covering similar targets as the HI_1215, 
showed a higher sensitivity for the detection of Type 1 plastics. 

A single threshold was applied to all three flight lines. The thresholds 
calibrated against pure materials in the compiled dataset could not be 
directly transferred to the imagery for the majority of the indexes. 
Table 4 provides a comparison between the thresholds suggested by the 
analysis with the compiled datasets and those suggested by imagery 
interpretation. The inconsistency between thresholds used for the 
compiled dataset and airborne imagery is further discussed in section 
4.4. 

In addition to the targets in the immediate surrounding of the VZW 
Inside/Outside club, the flight line a06c also included two commercial 
centers in Ostend with well identified plastic targets and this additional 
site was used for evaluation of the algorithms (Figs. 12 and 13). The 
HI_1732, the RBD, and the NDPI identified all solar panels (Target 13) 
present over the roof of the Bredene Shopping Center. Typical solar 
panel construction includes layers of ethylene-vinyl acetate (EVA) 
copolymer encapsulating the photovoltaic cells (Xu et al., 2018). This is 
a mixture of plastics from Type 1 (PE and PVC) with the same reflectance 
spectral shape as other members of this group (Corbari et al., 2020). The 
solar panels were not identified, however, by the HI_1215 index. The 
HI_1675 and the APGI indexes were able to identify the larger skylights 
over the commercial center Bedrijfspark Spuikom (Target 14). The 
ND_1715 was the only index able to identify both targets. 

Table 5 presents a summary of the performance of detection per al
gorithm, presenting the counts of flight lines in which a given target was 
identified. 

4. Discussion 

4.1. Sensor design and performance 

Tradeoffs occur between the spectral and spatial resolution of 

satellite and airborne sensors that influence the ability to detect plastics 
in the environment. Higher spectral resolution comes at a cost of 
reducing the signal-to-noise ratio (SNR) of the instrument, as there is less 
signal reaching the detector when shorter spectral intervals are sampled 
(Muller-Karger et al., 2018). Reduced SNR is particularly common for 
aquatic surfaces with very low backscattering and very high water ab
sorption in NIR and SWIR wavelengths (Dekker et al., 2018). In the 
context of this research, reduced SNR can influence plastic detection in 
mixed pixels with very small fractional coverage of plastics and when 
dealing with NIR/SWIR wavelengths where the reflectance signal from 
the water is very low. The SNR can be improved by increasing the spatial 
footprint, widening the spectral bands, pointing at a target for more 
time, or reducing the dynamic range of the detectors (Cetinić et al., 
2018). 

These tradeoffs can have important consequences for the design of 
satellite missions to routinely monitor plastics from bright beaches to 
dark waters. For example, Martínez-Vicente (2022) recently proposed a 
sensor archetype for plastic litter that would have high spatial resolution 
(1 to 5 m) to allow shape anomaly detection, include visible and 
shortwave infrared wavelengths to distinguish plastics within a mixed 
pixel comprised of different types of debris and to differentiate polymer 
types. Design considerations for such missions include the detectability 
of mixed pixels with dilute plastic concentrations (Hueni and Bertschi, 
2020), the impact of the underlying substrate on the spectral properties 
of semi-transparent plastics, and selecting spectral regions in which the 
atmosphere is not strongly absorbing. This experiment evaluated several 
of these aspects including mixed pixels of known targets, semi- 
transparent plastics, differing substrates under the same material, at
mospheric influences on the measurement, and sampling from different 
directions in relation to the sun. In general, the hyperspectral APEX 
sensor, through different algorithms, was well suited to differentiating 
between Type 1 and Type 2 plastics on land and emergent plastics on 
water. Rooftop solar panels (Type 1) and skylights (Type 2), for 
example, were routinely differentiated in multiple images over the same 
targets. However, as noted more below, challenges remain in routinely 
detecting semi-transparent material on grass and floating on water. The 
spectra of the underlying material can compromise the spectral signa
ture targeted by different algorithms (cf. PMD on grass in Fig. S1 of the 
supplementary material). 

From a mission perspective, the spatial layout of the surface ele
ments, the spatial resolution of the acquisition and the layout of the 
observation grid will define the magnitude of contrast reduction due to 
mixed pixels. In this study, we used unprojected imagery at a nominal 
spatial resolution of 1.6 m. This resolution is compatible with the scale 
of observation of WorldView-3 (NDPI, RBD), but it is one order of 
magnitude higher than that of MSI/Sentinel-2 (APGI). Airborne sensors 
such as APEX, AVIRIS, and PRISM do not have a consistent spatial res
olution between acquisition due to changes in aircraft height and tur
bulence effects that disturb the smooth scanning of the surface. The 
application of the same algorithms to different flight lines in Figs. 9 and 
10 provides an example of these spatial effects, with features better 
delineated or identified in one flight line over the others, depending on 
the algorithm. 

4.2. Algorithm design and performance 

A primary aim of any remote sensing algorithm is to maximize 
detection, possibly over different sensor types and environmental con
ditions, and to minimize false positives. Some plastic samples presented 
highly dampened optical signatures to be exploited for detection (cf. 
Cluster 1 in Fig. 5). While this could be an artefact of how the samples 
were measured (e.g., thin layers of material), it can represent real plastic 
material in the environment. Therefore, even with optimal data 
(controlled experiments with the pure plastic material filling the field of 
view of the sensor) optical information in the NIR to SWIR range cannot 
detect all plastic samples, resulting in false negatives. 

Fig. 7. As Fig. 6 but for the APGI algorithm.  

Table 4 
Thresholds used for the detection algorithms.  

Index Compiled dataset Airborne imagery 

HI_1215 > 0.010 > 0.007 
HI_1675 > 0.010 > 0.010 
HI_1732 > 0.007 > 0.013 
APGI – > 0.500 
NDPI > 0.050 > 0.350 
ND_1715 > 0.030 > 0.035 
RBD > 1.100 > 2.330  
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In general, the algorithms performed as expected from the compiled 
database analysis and provided consistent results among each other and 
among flight lines. Ratio algorithms with high sensitivity (NDPI or 
ND_1715) specific to plastic but insensitive to plastic type can be used to 
map the presence of plastics. The line height algorithm HI_1675 can be 
used for the identification of Type 2 plastics, and HI_1732 can be used 
for the identification of Type 1 plastics. The HI_1732 showed better 
performance than the HI_1215, which was not capable of identifying the 
large skylights (Target 13). The RBD is expected to identify plastics from 
Types 1 and 3, and therefore can be used by difference to the HI_1732 to 
identify plastics from Type 3. 

The APGI was not suitable for plastic detection in the compiled 
dataset due to positive detections for wood and ice. However, the index 
can still find applications in sceneries where ice and wood are not pre
sent. For example, ice was not present in the Spuikom during the mea
surements and it is possible that wood targets were also not present on 
land, since the APGI did not identified targets not identified by other 
indexes. However, due to the potential false positive with wood, other 
indices may be preferred. 

The line height indexes centered at 1215, 1675 and 1732 nm were 
more sensitive to mixed pixels and identified the central pixels of each 
target. Lowering the threshold of those indexes expanded the identifi
cation of peripherial pixels of the targets but also added false positives to 
the imagery. The HI_1675 was designed to capture the spectral signature 
unique to Type 2 plastics, with a strong absorption band around 1660 
nm, but includes a compromise in the choice of wavebands such as to 
also capture the signal of fiberglass. As presented in section 3.1, fiber
glass is a glass fiber reinforced plastic and presents the same spectral 
shape as PET between 1500 and 1800 nm, though the main absorption 
bands is shifted to 1684 nm. The proposed HI_1675 index showed 
sensitivity to detect Type 2 plastics in the imagery, including the thin 
stripes of semi-transparent roof sheets (Target 09, small skylights). The 
algorithm identified the whole area of the rooftop containing the sky
lights likely due to the narrowness of the skylights and mixed pixel 
effects. 

The generalist broadband algorithm developed here, ND_1715, is 
optimized for a part of the SWIR spectrum that appears to be unique to 
plastics – from 1550 to 1750 nm. In this wavelength range, plastic 

Fig. 8. Example comparison between the in situ ASD and APEX reflectance for the different flight lines. Subplots A, B and C show three validation targets on water. 
Subplot D shows the water, used as a calibration point. Note the near-zero and negative values of the station average water reflectance from APEX. 
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reflectance from the field experiment and historic database present a 
decreasing spectral slope. This is consistent with the 1725 nm spectral 
absorption band ubiquitous to floating microplastics from the major 
ocean gyres (Garaba and Dierssen, 2018), as well as a host of other 
macroplastics LDPE and HDPE macroplastics, like the white, orange, 
and blue boats targeted here and the EVA coating on the solar panels. 
This algorithm leverages the general decrease in reflectance from 1600 
to 1735 nm evident across nearly all of the plastic types with a 
normalized difference of two bands centered at 1610 nm (1590 to 1630 
nm) and 1710 nm (1695 to 1735 nm). 

Plastic targets floating on water were only partially identified or 
missed by most algorithms and flight lines. Considering the relatively 
small target size and imagery resolution, it is expected that the mixed 
signal with the darker water background reduced the magnitude of the 
features targeted by each algorithm. The boats (Target 04 and 06), 
however, were more easily identified by the different algorithms. 
Considering that their size is even smaller than the floating PMD bags 
and PET bottles targets, it is likely that another important aspect is the 
thickness of the plastic layer. The PMD bags form two thin sheets and 
result in a semi-transparent layer that mixes the signal from the 

underlying material. This can be seen for the in situ data in Fig. S1 of the 
supplementary material. The body of the PET bottles is transparent in 
the visible range and potentially semi-transparent in the SWIR at the 
thickness of the material, which is also supported by the in situ data in 
Fig. S1. Therefore the detection of thin floating plastic objects, even if 
large, is prone to false negatives. 

4.3. The impact of atmospheric correction errors 

The impact of biases in atmospheric correction also needs to be 
considered for algorithm design and evaluation. This can be critical on 
spectral ranges where surfaces in the imagery are dark in comparison 
with the atmosphere. One such example is the observation of floating 
materials on water using SWIR wavebands as necessary for plastic 
discrimination. 

In this study we have used the ELM to perform atmospheric correc
tion, as we had in situ data to control the atmospheric correction results, 
rather than just quantify the performance of a given physically based 
method. In fact, the ELM can enforce that the observations of different 
sensors match (in a regression sense). The ELM is a valid approach for 

Fig. 9. Pseudo true colour Red-Green-Blue (RGB) and transparent RGB background overlaid with the red mask of the Hydrocarbon Index at 1215 and 1732 nm 
(HI_1215 and HI_1732), Advanced Plastic Greenhouse Index (APGI), and Relative Band Depth (RBD) end-products derived from the APEX hyperspectral images 
obtained on 27 June 2019 over the Spuikom, Belgium. Values in parenthesis indicate the threshold used to create the red masks. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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the condition evaluated in this study: (1) small spatial extent to assume 
constant atmospheric properties over the scene; (2) small time interval 
between in situ and imagery compared to the scale of change in the 
illumination and reflection properties of the targets; and (3) calibration 
targets represent pure (not mixed) signal in the sensor data. Nonetheless, 
biases are expected in the darker end of the reflectance range, as the 
contributions of those data points for the cost function of the regression 
are smaller. Hence, the reflectance retrieval over water pixels of the 
Spuikom lagoon had high relative error. 

All line height indexes were robust to atmospheric correction errors 
that caused the water reflectance to be near zero or negative (Section 
3.4). This bias over water was higher for flight lines a01c and a02c 
compared to a06c. The application of the ratio algorithms to processed 
imagery without an initial “low reflectance” mask would result in high 
number of false positives over water (cf. Fig. S9 in the supplementary 
material). This masking, however, was arbitrary and can be expected to 
depend on the scenery and type and magnitude of the AC bias. Inter
estingly, while the NDPI and the ND_1715 had similar performances 
with the compiled dataset, the proposed ND_1715 algorithm was more 
robust to atmospheric correction errors and allowed for a consistent 
threshold between compiled dataset and imagery. It is possible that the 
use of a second set of band differences at wavelengths longer than 2000 
nm is the cause for the higher sensitivity of the NDPI to atmospheric 
correction errors, as a similar sensitivity was observed for the RBD 
which also uses a waveband longer than 2000 nm. 

It is worth noting that while the line height algorithms showed less 
contrast than the ratio algorithms, they were more robust to atmo
spheric correction errors. Therefore the different sensitivities to 

atmospheric correction and contrast reduction due to spatial averaging 
for line-heights and ratio indexes suggest a potential complementarity. 
Such complementarity is further supported by the specificity of some 
indexes to specific plastic groups. 

4.4. Algorithm detection thresholds 

Thresholds such as the ones applied directly to the individual indexes 
used here are a unidimensional decision tree model, manually (quali
tative) or statistically (quantitative) optimized to maximize the classi
fication of the desired target while minimizing false positives. Ideally, 
thresholds would be calibrated against a set of known materials and 
applied directly to arbitrary imagery. Results presented in Table 4 
however show that this was not the case for most algorithms. Consid
ering the analysis in Fig. 6, it could be expected that spatial averaging 
would require threshold values to be reduced for application to imagery 
for indexes with lower contrast. However, only HI_1215 had an imagery 
threshold lower than the calibration threshold. This suggests the dif
ference is dominated by spectrally featured atmospheric correction er
rors. Moreover, the difference in threshold values was larger for ratio 
indexes than for line-height indexes (cf. Section S3 of the supplementary 
material). The empirical line method used here for atmospheric 
correction provides an independent regression line per waveband, 
potentially resulting in higher interband variation than physically based 
methods that impose a spectral structure to atmospheric attenuation. 

Interestingly, the calibrated thresholds for the two algorithms pro
posed in this study, HI_1675 and ND_1715 were on only ones that could 
be directly transferred to the imagery. It is possible that for the ND_1715, 

Fig. 10. As in Fig. 9, but showing the pseudo true colour Red-Green-Blue (RGB) and transparent RGB background overlaid with the red mask of the Hydrocarbon 
Index at 1675 nm (HI_1675), Normalized Difference Plastic Index (NDPI), and Normalized Difference at 1610 and 1715 nm (ND_1715) end-products derived from the 
APEX hyperspectral images obtained on 27 June 2019 over the Spuikom, Belgium. Values in parenthesis indicate the threshold used to create the red masks. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Plastic objects and structures (“Targets”, T) in the VZW Inside/Outside club, Ostend. (A) Google Earth imagery for August/2019, rotated to the orientation of 
the observation grid of flight line a06c; (T05) Stacked blue and white boats on shore; (T06) Hobie catamaran sailboats; (T07) Portable cabin (Pullman, Portakabin) 
coated in PE; (T08) Artificial grass (typically made of PE, PP and PA); (T09) Rooftop with skylight strips (likelly PMMA or PC); (T10) and (T11) parked boats covered 
by white and blue tarps (likelly PMMA); (T12) Additional cabin and boats. Objects identified from pictures and satelite imagery. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Pseudo true colour image overlaid with the red mask of the Hydrocarbon Indexes at 1215, 1675 and 1732 nm (HI_1215, HI_1675, HI_1732), the Advanced 
Plastic Greenhouse Index (APGI), the Normalized Difference Plastic Index (NDPI), the Normalized Difference at 1610 and 1715 nm (NDI_1715), and the Relative 
Band Depth (RBD) index applied to APEX hyperspectral image flight line a06c obtained on 27 June 2019 over the Bredene Shopping Center area, Belgium. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the inclusion of only two wavebands covering a relatively narrow range 
of wavelengths when compared to the other ratio indexes, makes it more 
robust to atmospheric correction errors. However, the reason for the 
relative robustness of HI_1675 when compared with other indexes is 
unclear. More studies are necessary to establish a general recommen
dation in terms of threshold values to be applied operationally. 

It is worth noting that the thresholds provided in this study are 
specific to the reflectance quantity used. While the conversion from 
hemispherical-directional to Lambert-equivalent bi-hemispherical 
reflectance involves a constant scaling factor (π sr− 1), the algorithms 
contain addition or subtraction operations before the normalization, and 
the scaling factor does not cancel out. 

5. Conclusions 

The analysis of normalized spectra in the NIR-SWIR shows that 
plastics appear to have unique spectral signatures when considering 
other common surface materials. Several available algorithms are able 
to capture this signature for plastic detection under ideal laboratory 
conditions, namely in the absence of mixed signal from surrounding or 
overlaid materials. Laboratory and field data support that mixed signals 
are the main challenge for plastic detection by remote sensing. Some 
plastic materials are common as thin films, and may not present suffi
cient optical depth to be detected, unless aggregated into multiple 
layers. Similarly, the size of the material and aggregation may not be 
large enough to completely fill the field of view of the detector element, 
resulting in mixed signals from surrounding surfaces even at high plastic 
optical depths. The development of sensitive algorithms that enhance 
contrast between plastic and non-plastic can remediate these effects to 
some extent, and most algorithms evaluated in this research showed a 
high degree of specificity and sensitivity to at least one plastic type. 

Therefore, except for optically thin films, plastic detection from 
remote platforms appears feasible with current sensors and algorithms 
when plastic structures cover the full pixel footprint. The full coverage 
also prevents reduction of the signal magnitude when plastic materials 
are present over dark backgrounds such as water. Detection of subpixel 
plastic surfaces is highly uncertain, depending on brightness contrast 
and fractional coverage. Here we showed that relatively broad band 
indexes were sufficient for plastic detection, therefore allowing sensor 
design for plastic detection with limited broader bands, but compara
tively higher spatial resolution and SNR. For plastic type detection, finer 
spectral resolution is necessary, which can compromise spatial resolu
tion and SNR. In this context, sensors with several relatively narrow 
bands in the SWIR might represent a flexible alternative, allowing for 
waveband aggregation to increase SNR for the detection of plastics, and 
more fine spectral resolution for identification of plastic types, at lower 
SNR, on the identified plastic structures. At least three different plastic 
types, based on unique spectral signatures in the NIR-SWIR, seem 
feasible to be differentiated by remote sensing based on optical 
signatures. 
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Table 5 
Detection of plastic target from the APEX imagery, considering the thresholds presented in Table 4. Counts represent the number of flight lines in which each target was 
identified with a given algorithm and threshold. The alphanumeric code preceding each entry corresponds to the target numbers following Fig. 1, Fig. 11 and Fig. 13.  

Target Plastic type HI Indices Ratio Indices 

1215 1675 1732 APGI NDPI ND_1715 RDB 

Terrestrial  
T01 - PMD bags on grass 1 – – 3 3 – – – 
T05 - Blue and white boats 1 3 – 3 3 3 3 3 
T07 - White trailer 1 2 – – 3 3 3 1 
T08 - Synthetic grass 1 – – 1 – 3 3 3 
T09 - Skylights on boathouse 2 – 3 – – 1 1 – 
T10 - Tarp-covered boats 1 2 – 3 – 3 – 3 – 
T11 - Tarp-covered boats 2 2 – 3 – – 1 3 – 
T12 - Kayaks and trailer 1,2 3 3 – 3 3 3 2 
T13 - Skylights on shops† 2 – 1 – 1 – 1 – 
T14 - Solar panels on shops† 1 – – 1 – 1 1 1 
Aquatic  
T02 - PMD bags on water 1 – – – – 1 1 – 
T03 - PET bottles on water 1,2 – 2 – 1 1 3 – 
T04 - Orange boats 1 3 3 2 – 3 3 3 
T06 - White hobicats 1 3 – – – 3 3 3  

† Target only imaged in one flight line (a06c). 
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Fox-Kemper, B., Garaba, S.P., Goddijn-Murphy, L., Hardesty, B.D., Hoffman, M.J., 
Isobe, A., Jongedijk, C.E., Kaandorp, M.L.A., Khatmullina, L., Koelmans, A.A., 
Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., 
Maqueda, M.A.M., Poulain-Zarcos, M., Rodríguez, E., Ryan, P.G., Shanks, A.L., 
Shim, W.J., Suaria, G., Thiel, M., van den Bremer, T.S., Wichmann, D., Feb 2020. The 
physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 
15 (2), 023003. 

Wang, M., Hu, C., Cannizzaro, J., English, D., Han, X., Naar, D., Lapointe, B., Brewton, R., 
Hernandez, F., 2018. Remote sensing of sargassum biomass, nutrients, and pigments. 
Geophys. Res. Lett. 45 (22), 12359–12367. 

Xu, Y., Li, J., Tan, Q., Peters, A.L., Yang, C., 2018. Global status of recycling waste solar 
panels: a review. Waste Manag. 75, 450–458. 

Zhang, P., Du, P., Guo, S., Zhang, W., Tang, P., Chen, J., Zheng, H., 2022. A novel index 
for robust and large-scale mapping of plastic greenhouse from sentinel-2 images. 
Remote Sens. Environ. 276, 113042. 

A. Castagna et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020530574230
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526325498
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526325498
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534038407
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534051984
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534051984
https://www.r-project.org/index.html
https://www.r-project.org/index.html
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534066053
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534078580
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534078580
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534090750
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534090750
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534090750
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020532160623
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020532160623
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020532160623
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020532160623
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526355119
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526370280
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526370280
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020526370280
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534105744
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534105744
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534133241
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534133241
http://refhub.elsevier.com/S0034-4257(23)00385-1/rf202310020534133241

	Evaluation of historic and new detection algorithms for different types of plastics over land and water from hyperspectral  ...
	1 Introduction
	2 Material and methods
	2.1 Field campaign
	2.1.1 Sampled targets
	2.1.2 In situ reference measurements
	2.1.3 Airborne imagery

	2.2 Compiled dataset of plastics and other materials
	2.3 Plastic detection algorithms

	3 Results
	3.1 NIR/SWIR characterization of selected plastics and non-plastic materials
	3.2 Evaluation of specificity plastic detection algorithms
	3.3 Water and floating targets viewed in APEX imagery
	3.4 Application of plastic detection algorithms to APEX imagery

	4 Discussion
	4.1 Sensor design and performance
	4.2 Algorithm design and performance
	4.3 The impact of atmospheric correction errors
	4.4 Algorithm detection thresholds

	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


